Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712262

RESUMO

Background: Nearly 1% or 1.3 million babies are born with congenital heart disease (CHD) globally each year - many of whom will require palliative or corrective heart surgery within the first few years of life. A detailed understanding of cardiac maturation can help to expand our knowledge on cardiac diseases that develop during gestation, identify age-appropriate cardiovascular drug therapies, and inform clinical care decisions related to surgical repair, myocardial preservation, or postoperative management. Yet, to date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is largely limited to animal models. Methods: Right atrial tissue samples were collected from n=117 neonatal, infant, and pediatric patients undergoing correct surgery due to (acyanotic) CHD. Patients were stratified into five age groups: neonate (0-30 days), infant (31-364 days), toddler to preschool (1-5 years), school age (6-11 years), and adolescent to young adults (12-32 years). We measured age-dependent adaptations in cardiac gene expression, and used computational modeling to simulate action potential and calcium transients. Results: Enrichment of differentially expressed genes (DEG) was explored, revealing age-dependent changes in several key biological processes (cell cycle, cell division, mitosis), cardiac ion channels, and calcium handling genes. Gene-associated changes in ionic currents exhibited both linear trends and sudden shifts across developmental stages, with changes in calcium handling ( I NCX ) and repolarization ( I K1 ) most strongly associated with an age-dependent decrease in the action potential plateau potential and increase in triangulation, respectively. We also note a shift in repolarization reserve, with lower I Kr expression in younger patients, a finding likely tied to the increased amplitude of I Ks triggered by elevated sympathetic activation in pediatric patients. Conclusion: This study provides valuable insights into age-dependent changes in human cardiac gene expression and electrophysiology among patients with CHD, shedding light on molecular mechanisms underlying cardiac development and function across different developmental stages.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38727253

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with Comprehensive in Vitro Proarrhythmia Assay (CiPA). Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. We investigated the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology. iCell cardiomyocytes2 were cultured and biosignals were acquired using a microelectrode array (MEA) system (1-14 days). Continuous recordings revealed a 22.6% increase in the beating rate and 7.7% decrease in the field potential duration (FPD) during a 20-minute equilibration period. Location specific differences across a multiwell plate were also observed, with iCell cardiomyocytes2 in the outer rows beating 8.8 beats per minute (BPM) faster than the inner rows. Cardiac endpoints were also impacted by cell culture duration; from 2-14 days the beating rate decreased (-12.7 BPM), FPD lengthened (+257 ms), and spike amplitude increased (+3.3 mV). Cell culture duration (4-10 days) also impacted cardiomyocyte drug responsiveness (E-4031, nifedipine, isoproterenol). qRT-PCR results suggest that daily variations in cardiac metrics may be linked to the continued maturation of hiPSC-CMs in culture (2-30 days). Daily experiments were also repeated using a second cell line (Cor.4U). Collectively, our study highlights multiple sources of variability to consider and address when performing hiPSC-CM MEA studies. To improve reproducibility and data interpretation, MEA-based studies should establish a standardized protocol and report key experimental conditions (e.g., cell line, culture time, equilibration time, electrical stimulation settings, raw data values).

3.
Toxicol Sci ; 198(2): 273-287, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38310357

RESUMO

Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated-including bisphenol S (BPS) and bisphenol F (BPF)-without a comprehensive understanding of their toxicological profile. Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17ß-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging. Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures decreased the depolarization spike amplitude, and shortened the field potential, action potential duration, and calcium transient duration (E2 ≥ BPA ≥ BPF ≫ BPS). Cardiomyocyte physiology was largely undisturbed by BPS. BPA-induced effects were exaggerated when coadministered with an L-type calcium channel (LTCC) antagonist or E2, and reduced when coadministered with an LTCC agonist or an estrogen receptor alpha antagonist. E2-induced effects were not exaggerated by coadministration with an LTCC antagonist. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described findings should be validated using a more complex ex vivo and/or in vivo model.


Assuntos
Estradiol , Células-Tronco Pluripotentes Induzidas , Fenóis , Humanos , Miócitos Cardíacos , Cardiotoxicidade , Compostos Benzidrílicos/toxicidade
4.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352347

RESUMO

Background: Electroanatomical adaptations during the neonatal to adult phase have not been comprehensively studied in preclinical animal models. To explore the impact of age as a biological variable on cardiac electrophysiology, we employed neonatal and adult guinea pigs, which are a recognized animal model for developmental research. Methods: Healthy guinea pigs were categorized into three age groups (neonates, n=10; younger adults, n=13; and older adults, n=26). Electrocardiogram (ECG) recordings were collected in vivo from anesthetized animals (2-3% isoflurane). A Langendorff-perfusion system was employed for optical assessment of epicardial action potentials and calcium transients, using intact excised heart preparations. Optical data sets were analyzed and metric maps were constructed using Kairosight 3.0. Results: The allometric relationship between heart weight and body weight diminishes with age, as it is strongest at the neonatal stage (R 2 = 0.84) and completely abolished in older adults (R 2 = 1E-06). Neonatal hearts exhibit circular activation waveforms, while adults show prototypical elliptical shapes. Neonatal conduction velocity (40.6±4.0 cm/s) is slower than adults (younger adults: 61.6±9.3 cm/s; older adults: 53.6±9.2 cm/s). Neonatal hearts have a longer action potential duration (APD) and exhibit regional heterogeneity (left apex; APD30: 68.6±5.6 ms, left basal; APD30: 62.8±3.6), which was absent in adult epicardium. With dynamic pacing, neonatal hearts exhibit a flatter APD restitution slope (APD70: 0.29±0.04) compared to older adults (0.49±0.04). Similar restitution characteristics are observed with extrasystolic pacing, with a flatter slope in neonatal hearts (APD70: 0.54±0.1) compared to adults (Younger adults: 0.85±0.4; Older adults: 0.95±0.7). Finally, neonatal hearts display unidirectional excitation-contraction coupling, while adults exhibit bidirectionality. Conclusion: The transition from neonatal to adulthood in guinea pig hearts is characterized by transient changes in electroanatomic properties. Age-specific patterns can influence cardiac physiology, pathology, and therapies for cardiovascular diseases. Understanding postnatal heart development is crucial to evaluating therapeutic eligibility, safety, and efficacy. What is Known: Age-specific cardiac electroanatomical characteristics have been documented in humans and some preclinical animal models. These age-specific patterns can influence cardiac physiology, pathology, and therapies for cardiovascular diseases. What the Study Adds: Cardiac electroanatomical characteristics are age-specific in guinea pigs, a well-known preclinical model for developmental studies. Age-dependent adaptations in cardiac electrophysiology are readily observed in the electrocardiogram recordings and via optical mapping of epicardial action potentials and calcium transients. Our findings reveal unique activation and repolarization characteristics between neonatal and adult animals.

5.
J Inherit Metab Dis ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847851

RESUMO

Ammonia, which is toxic to the brain, is converted into non-toxic urea, through a pathway of six enzymatically catalyzed steps known as the urea cycle. In this pathway, N-acetylglutamate synthase (NAGS, EC 2.3.1.1) catalyzes the formation of N-acetylglutamate (NAG) from glutamate and acetyl coenzyme A. NAGS deficiency (NAGSD) is the rarest of the urea cycle disorders, yet is unique in that ureagenesis can be restored with the drug N-carbamylglutamate (NCG). We investigated whether the rarity of NAGSD could be due to low sequence variation in the NAGS genomic region, high NAGS tolerance for amino acid replacements, and alternative sources of NAG and NCG in the body. We also evaluated whether the small genomic footprint of the NAGS catalytic domain might play a role. The small number of patients diagnosed with NAGSD could result from the absence of specific disease biomarkers and/or short NAGS catalytic domain. We screened for sequence variants in NAGS regulatory regions in patients suspected of having NAGSD and found a novel NAGS regulatory element in the first intron of the NAGS gene. We applied the same datamining approach to identify regulatory elements in the remaining urea cycle genes. In addition to the known promoters and enhancers of each gene, we identified several novel regulatory elements in their upstream regions and first introns. The identification of cis-regulatory elements of urea cycle genes and their associated transcription factors holds promise for uncovering shared mechanisms governing urea cycle gene expression and potentially leading to new treatments for urea cycle disorders.

6.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745451

RESUMO

Background: Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated - including bisphenol S (BPS) and bisphenol F (BPF) - without a comprehensive understanding of their toxicological profile. Objective: Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17ß-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Methods: Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging at baseline and in response to chemical exposure (0.001-100 µM). Results: Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1,000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures resulted in a decrease in the depolarizing spike amplitude, shorter field potential and action potential duration, shorter calcium transient duration, and decrease in hiPSC-CM contractility (E2 > BPA > BPF >> BPS). Cardiomyocyte physiology was largely undisturbed by BPS exposure. BPA-induced effects were exaggerated when co-administered with an L-type calcium channel antagonist (verapamil) or E2 - and reduced when co-administered with an L-type calcium channel agonist (Bay K8644) or an estrogen receptor alpha antagonist (MPP). E2-induced effects generally mirrored those of BPA, but were not exaggerated by co-administration with an L-type calcium channel antagonist. Discussion: Collectively across multiple cardiac endpoints, E2 was the most potent and BPS was the least potent disruptor of hiPSC-CM function. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described in vitro findings should be validated using a more complex ex vivo and/or in vivo model.

7.
J Physiol ; 601(13): 2593-2619, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031380

RESUMO

The postnatal mammalian heart undergoes remarkable developmental changes, which are stimulated by the transition from the intrauterine to extrauterine environment. With birth, increased oxygen levels promote metabolic, structural and biophysical maturation of cardiomyocytes, resulting in mature muscle with increased efficiency, contractility and electrical conduction. In this Topical Review article, we highlight key studies that inform our current understanding of human cardiomyocyte maturation. Collectively, these studies suggest that human atrial and ventricular myocytes evolve quickly within the first year but might not reach a fully mature adult phenotype until nearly the first decade of life. However, it is important to note that fetal, neonatal and paediatric cardiac physiology studies are hindered by a number of limitations, including the scarcity of human tissue, small sample size and a heavy reliance on diseased tissue samples, often without age-matched healthy controls. Future developmental studies are warranted to expand our understanding of normal cardiac physiology/pathophysiology and inform age-appropriate treatment strategies for cardiac disease.


Assuntos
Átrios do Coração , Miócitos Cardíacos , Animais , Gravidez , Feminino , Recém-Nascido , Humanos , Criança , Miócitos Cardíacos/metabolismo , Átrios do Coração/metabolismo , Parto , Mamíferos
8.
J Oral Sci ; 54(1): 113-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22466895

RESUMO

We used the short-form of the Oral Health Impact Profile (OHIP-14) to assess the impact of periodontal diseases on the quality of life of Jordanian adults. A systematic random sample of 400 individuals was selected from patients referred to the periodontics clinic at the Dental Teaching Center in Irbid, Jordan. Those willing to participate were examined by specifically trained dentists and requested to complete the Arabic short-form version of the OHIP-14 questionnaire. Multivariate analysis of differences in OHIP-14 subscales among the periodontal disease groups was conducted using the general linear model multivariate procedure. This study included 400 adults (164 men and 236 women) aged between 18 and 60 years, with a mean (SD) of 36.7 (11.9) years. Of the 400 participants, 41.8% had chronic gingivitis, 19.8% had mild periodontitis, 23.3% had moderate periodontitis, and 15.3% had severe periodontitis. "Fairly often" or "very often" was reported for one or more items of the OHIP-14 by fewer than one-third of patients with gingivitis (32.9%) or mild periodontitis (31.6%), by about one-half of patients with moderate periodontitis (53.8%), and by about two-thirds of those with severe periodontitis (63.9%). There was a statistically significant association between the severity of periodontal disease and OHIP-14 scores (P < 0.05). Severe chronic periodontitis had a significantly greater impact on quality of life, specifically with regard to physical pain and physical disability (P < 0.05). Physical pain and physical disability were the dimensions most affected, and all OHIP-14 scores were significantly associated with severity of periodontal disease after adjusting for common confounders.


Assuntos
Periodontite Crônica/psicologia , Gengivite/psicologia , Qualidade de Vida , Perfil de Impacto da Doença , Adolescente , Adulto , Distribuição por Idade , Árabes , Estudos Transversais , Feminino , Humanos , Jordânia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Saúde Bucal , Perda da Inserção Periodontal/psicologia , Psicometria , Fatores Socioeconômicos , Inquéritos e Questionários , Traduções , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...